

Unleashing the Value of Digital Twins with the OSDU™ Data Platform: A Modern Data Management Approach

Karin Becker¹, Givanildo Nascimento^{1, 2}

- 1 Federal University of Rio Grande do Sul Brazil
- 2 Petrobras Brazil

Overview

- » Digital Twins (DT)
- » DT in PETWIN
- » DT Data Management Component requirements
- » OSDU Data Platform for DTs: Strengths and Opportunities

Digital Twin (DT) for Production system

- » "A set of adaptive models that emulate the behaviour of a physical system in a virtual system getting real time data to update itself along its life cycle."
- » DT as a :
 - Descriptive system
 - Predictive system
 - Prescriptive system

DT Reference Architectures

Earlier architectures

» Three-dimensions (GRIEVES, 2014)

DT Reference Architectures

Earlier architectures

» Three-dimensions (GRIEVES, 2014)

Evolution

» 5-Dimensions (TAO; ZHANG, 2017)

Digital Twin in PETWIN

()SDU

7

Copyright © The Open Group 2021

Digital Twin in PETWIN

Copyright © The Open Group 2021

DT Data Management requirements

Correia, J.B.; Abel, M.; Becker, K. Data Management in Digital Twins: a Systematic Literature Review. Knowledge and Information Systems, 2023.

PÚBLICA

()SDI

DT Data Management requirements

Role and functionality similar to a data lake

- integration of heterogeneous data (native format)
- support for physical and logical organization
- various user profiles
- metadata and enforced quality
- scalability for storage and processing
- applied to knowledge extraction

OSDU

10

Copyright © The Open Group 2023

DT Data Management Component

- » Data at different abstraction levels
 - Data Information Knowledge
- » Integrate DT data pipelines
- » Provide data storage, abstraction, consistency
- » Support for data search/discovery and analysis
- » Promote interoperability, high cohesion and low coupling among DT systems

Copyright © The Open Group 2021

Can OSDU Data Platform provide core functionality?

Correia, J.B.; Becker, K. Data fusion core of a digital twin from the oil and gas industry. SBBD 2021. Correia, J.B. et al. Data management in Digital Twins for the Oil and Gas Industry: beyond the OSDU Data Platform. JIDM 2022.

12

OSDU DP architecture roles

- » System of records (SoRc)
 - Microservices architecture
 - Cloud native, provider-agnostic
 - Centralized storage
 - Long-term data
- » System of engagement (SoE)
 - Decentralized storage (edge)
 - Real-time short-term data
- » System of reference (SoRf)
 - DT Predictive role
 - Trusted source to feed ML with accurate data – Golden Records
 - Related to Data Lake(house)

OSDU DP data modelling

- » Metadata through schemata describing the business context and the technical aspects
- » Significant efforts in aligning schemata with existing standards
 - Reference data vs. PPDM value list
 - Master data vs. previous Energistics standards
 - Master data for production inspired by CFIHOS
 - Etc

Can OSDU DP provide core functionality?

Benefits

- » Ingestion of heterogeneous data in their native format;
- » Covers the basic life-cycle
- » Provides a SoRc, a SoE and a SoRf;
- » Cloud native and provider-agnostic;
- » Scalable data storage and processing;
- » Breaking down silos
 - All data in a single platform;
 - No manual data transfer among applications;

15

» Unlock innovation in academia and industry

Is OSDU DP enough?

Challenges and opportunities

- Absence of patterns modeling, rigorous semantics for schema definition and extensions (e.g. missing concepts);
 - how to balance flexibility with needs to merge/interoperate (without mapping)?
- » Time necessary for addressing schemata for new domains (e.g. production)
 - Significant (hard, hard) work has been done, strategies to accelerate data type definitions are under consideration

- how to create customized descriptions that can survive overtime?
- » Can explicit domain semantics contribute to modeling issues and extend core functionality?
- » Are existing lineage mechanisms sufficient for decision-centric environments?

Is OSDU DP enough?

Challenges and opportunities

- Absence of patterns modeling, rigorous semantics for schema definition and extensions (e.g. missing concepts);
 - how to balance flexibility with needs to merge/interoperate (without mapping)?
- » Time necessary for addressing schemata for new domains (e.g. production)
 - Significant (hard, hard) work has been done, strategies to accelerate data type definitions are under consideration
 - how to create customized descriptions that can survive overtime?
- » Can explicit domain semantics contribute to modeling issues and extend core functionality?
- » Are existing lineage mechanisms sufficient for decision-centric environments?

OSDU DP modeling

PÚBLICA

()SDI I

OSDU DP + Ontology

PÚBLICA

()SDU

Modeling Guidance

20

OSDU DP + Ontology

Questions?

Thanks to all organizations and people who have donated time and effort for this awesome open data platform !

Copyright © The Open Group 2021